
Parapint

Michael Bynum Carl Laird Bethany Nicholson Denis Ridzal

Jul 19, 2023



CONTENTS:

1 Overview 2

2 Installation 3
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Solving Dynamic Optimization Problems with Schur-Complement Decomposition 4

4 API documentation 6
4.1 parapint.linalg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1.1 Base Linear Solver Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1.2 MA27 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1.3 MumpsInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.4 ScipyInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.5 Parallel Schur-Complement Linear Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 parapint.algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 InteriorPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 parapint.interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.1 Base IP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.2 IP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.3 Dynamic SC IP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.4 MPI Dynamic SC IP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Sandia Funding Statement 23

6 Indices and tables 24

Parapint is a Python Package for parallel solution of dynamic optimization problems.

1



CHAPTER

ONE

OVERVIEW

Parapint is a package for parallel solution of dynamic optimization problems. Parapint currently includes a Schur-
Complement decomposition algorithm based on [Word2014]. Parapint utilizes Pynumero BlockVector and BlockMatrix
classes (which in turn utilize Numpy arrays and Scipy sparse matrices) for efficient block-based linear algebra operations
such as block-matrix, block-vector dot products. These classes enable convenient construction of block-structured KKT
systems. Parapint also utilizes Pynumero interfaces to efficient numerical routines in C, C++, and Fortran, including
the AMPL Solver Library (ASL), MUMPS, and the MA27 routines from the Harwell Subroutine Library (HSL).

Parapint is designed with three primary modules:

• The algorithms. The algorithms drive the solution process and perform high level operations such as the fraction-
to-the boundary rule or inertia correction for the interior point algorithm. The interior point algorithm is designed
to work with any BaseInteriorPointInterface and any LinearSolverInterface as long as the interface
and the linear solver are compatible.

• The interfaces. All interfaces should inherit from BaseInteriorPointInterface and implement all abstract
methods. These are the methods required by the interior point algorithm. The interfaces are designed to work
with a subset of linear solvers. The table below outlines which interfaces work with which linear solvers.

• The linear solvers. All linear solvers should inherit from LinearSolverInterface and implement all abstract
methods. These are the methods required by the interior point algorithm. The linear solvers are designed to work
with certain interface classes. The table below outlines which linear solvers work with which interfaces.

Table 1: Compatible linear solvers and interfaces
Linear Solver Compatible Interface Class
InteriorPointMA27Interface InteriorPointInterface
MumpsInterface InteriorPointInterface
ScipyInterface InteriorPointInterface
SchurComplementLinearSolver DynamicSchurComplementInteriorPointInterface
MPISchurComplementLinearSolver MPIDynamicSchurComplementInteriorPointInterface

2



CHAPTER

TWO

INSTALLATION

Parapint can be installed by cloning the parapint repository from https://github.com/parapint/parapint

git clone https://github.com/parapint/parapint.git
cd parapint/
python setup.py install

2.1 Requirements

Parapint requires Python (at least version 3.7) and the following packages:

• Numpy (version 1.13.0 or greater)

• Scipy

• Pyomo (Parapint currently only works with the master branch of Pyomo)

Pyomo should be installed from source and used to build Pynumero extensions:

pip install numpy
pip install scipy
git clone https://github.com/pyomo/pyomo.git
cd pyomo/
python setup.py install
cd pyomo/contrib/pynumero/
python build.py -DBUILD_ASL=ON -DBUILD_MA27=ON -DIPOPT_DIR=<path/to/ipopt/build/>

Pymumps also needs to be installed in order to use MUMPS:

conda install pymumps

3

https://github.com/parapint/parapint


CHAPTER

THREE

SOLVING DYNAMIC OPTIMIZATION PROBLEMS WITH
SCHUR-COMPLEMENT DECOMPOSITION

In order to solve a dynamic optimization problem with schur-complement decomposition, you must create a class which
inherits from MPIDynamicSchurComplementInteriorPointInterface. This class must implement the method
build_model_for_time_block():

import parapint

class Problem(parapint.interfaces.MPIDynamicSchurComplementInteriorPointInterface):
def __init__(self, your_arguments):

# do anything you need to here
super(Problem, self).__init__(start_t, end_t, num_time_blocks, mpi_comm)

def build_model_for_time_block(self, ndx, start_t, end_t, add_init_conditions):
# build the dynamic optimization problem with Pyomo over the time horizon
# [start_t, end_t] and return the model along with two lists. The first
# list should be a list of pyomo variables corresponding to the states at
# start_t. The second list should be a list of pyomo variables
# corresponding to the states at end_t. Continuity will be enforced
# between the states at end_t for one time block
# and the states at start_t for the next time block. It is very important for
# the ordering of the state variables to be the same for every time block.

return model, start_states, end_states

problem = Problem(some_arguments)

The build_model_for_time_block() method will be called once for every time block. It will be called within the
call to __init__() of the super class (MPIDynamicSchurComplementInteriorPointInterface). Therefore, if
you override the __init__ method, it is very important to still call the __init__ method of the base class as shown above.
There is an example class in schur_complement.py in the examples directory within Parapint.

In addition to the implementation of the class described above, you must create an instance of
MPISchurComplementLinearSolver. This linear solver requires a sub-solver for every time block:

cntl_options = {1: 1e-6} # the pivot tolerance
sub_solvers = {ndx: parapint.linalg.InteriorPointMA27Interface(cntl_options=cntl_
→˓options) for ndx in range(num_time_blocks)}
schur_complement_solver = parapint.linalg.InteriorPointMA27Interface(cntl_options=cntl_
→˓options)
linear_solver = parapint.linalg.MPISchurComplementLinearSolver(subproblem_solvers=sub_
→˓solvers,

(continues on next page)

4



, Release 0.1.0.dev

(continued from previous page)

schur_complement_
→˓solver=schur_complement_solver)

The linear solver and interface instances can then be used with the interior point algorithm:

options = parapint.algorithms.IPOptions()
options.linalg.solver = linear_solver
status = parapint.algorithms.ip_solve(interface, options)
assert status == parapint.interior_point.InteriorPointStatus.optimal
problem.load_primals_into_pyomo_model()
for ndx in problem.local_block_indices:

model = problem.pyomo_model(ndx)
model.pprint()

5



CHAPTER

FOUR

API DOCUMENTATION

4.1 parapint.linalg

4.1.1 Base Linear Solver Class

class LinearSolverInterface

Bases: ABC

This is the base class for linear solvers that work with the interior point algorithm. Derived classes must imple-
ment the following abstract methods:

• do_symbolic_factorization

• do_numeric_factorization

• do_back_solve

• get_inertia

abstract do_symbolic_factorization(matrix, raise_on_error=True, timer=None)
Perform symbolic factorization with the nonzero structure of the matrix.

abstract do_numeric_factorization(matrix, raise_on_error=True, timer=None)
Factorize the matrix. Can only be called after do_symbolic_factorization.

abstract do_back_solve(rhs)
Solve the linear system matrix * x = rhs for x. Can only be called after do_numeric_factorization.

abstract get_inertia()

Get the inertia of the factorized matrix. Can only be called after do_numeric_factorization.

4.1.2 MA27 Interface

class InteriorPointMA27Interface(cntl_options=None, icntl_options=None, iw_factor=1.2, a_factor=2)
Bases: LinearSolverInterface

An interface to HSL’s MA27 routines for use with Parapint’s interior point algorithm. See http://www.hsl.rl.ac.
uk/archive/specs/ma27.pdf for details on the use of MA27.

Note: The pivot tolerance, cntl(1), should be selected carefully. Larger values result in better precision but
smaller values result in better performance.

6

http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf
http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf


, Release 0.1.0.dev

Parameters

cntl_options: dict
See http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf

icntl_options: dict
See http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf

iw_factor: float
The factor for memory allocation of the integer working arrays used by MA27. This value
is increased by the increase_memory_allocation method.

a_factor: float
The factor for memory allocation of the A array used by MA28. This value is increased by
the increase_memory_allocation_method.

do_symbolic_factorization(matrix, raise_on_error=True, timer=None)
Perform symbolic factorization. This calls the MA27A/AD routines.

Parameters

matrix: scipy.sparse.spmatrix or
pyomo.contrib.pynumero.sparse.block_matrix.BlockMatrix

The matrix to factorize

raise_on_error: bool
If False, an error will not be raised if an error occurs during symbolic factorization. Instead
the status attribute of the results object will indicate an error ocurred.

timer: HierarchicalTimer

Returns

res: LinearSolverResults
A LinearSolverResults object with a status attribute for the LinearSolverStatus

do_numeric_factorization(matrix, raise_on_error=True, timer=None)
Perform numeric factorization. This calls the MA27B/BD routines.

Parameters

matrix: scipy.sparse.spmatrix or
pyomo.contrib.pynumero.sparse.block_matrix.BlockMatrix

The matrix to factorize

raise_on_error: bool
If False, an error will not be raised if an error occurs during numeric factorization. Instead
the status attribute of the results object will indicate an error ocurred.

timer: HierarchicalTimer

Returns

res: LinearSolverResults
A LinearSolverResults object with a status attribute for the LinearSolverStatus

increase_memory_allocation(factor)
Increas the memory allocation for factorization. This method should only be called if the results status from
do_symbolic_factorization or do_numeric_factorization is LinearSolverStatus.not_enough_memory.

Parameters

factor: float
The factor by which to increase memory allocation. Should be greater than 1.

4.1. parapint.linalg 7

http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf
http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf


, Release 0.1.0.dev

do_back_solve(rhs)
Performs a back solve with the factorized matrix. Should only be called after do_numeric_factorization.

Parameters

rhs: numpy.ndarray or BlockVector

Returns

result: numpy.ndarray or BlockVector

get_inertia()

Get the inertia. Should only be called after do_numeric_factorization.

Returns

num_pos: int
The number of positive eigenvalues of A

num_neg: int
The number of negative eigenvalues of A

num_zero: int
The number of zero eigenvalues of A

set_icntl(key, value)
Set the value for an icntl option.

Parameters

key: int
value: int

set_cntl(key, value)
Set the value for a cntl option.

Parameters

key: int
value: float

get_icntl(key)
Get the value for an icntl option.

Parameters

key: int

Returns

val: int

get_cntl(key)
Get the value for a cntl option.

Parameters

key: int

Returns

val: float

4.1. parapint.linalg 8



, Release 0.1.0.dev

4.1.3 MumpsInterface

class MumpsInterface(par=1, comm=None, cntl_options=None, icntl_options=None)
Bases: LinearSolverInterface

do_symbolic_factorization(matrix, raise_on_error=True, timer=None)
Perform symbolic factorization with the nonzero structure of the matrix.

do_numeric_factorization(matrix, raise_on_error=True, timer=None)
Factorize the matrix. Can only be called after do_symbolic_factorization.

do_back_solve(rhs)
Solve the linear system matrix * x = rhs for x. Can only be called after do_numeric_factorization.

get_inertia()

Get the inertia of the factorized matrix. Can only be called after do_numeric_factorization.

4.1.4 ScipyInterface

class ScipyInterface(compute_inertia=False)
Bases: LinearSolverInterface

do_symbolic_factorization(matrix, raise_on_error=True, timer=None)
Perform symbolic factorization with the nonzero structure of the matrix.

do_numeric_factorization(matrix, raise_on_error=True, timer=None)
Factorize the matrix. Can only be called after do_symbolic_factorization.

do_back_solve(rhs)
Solve the linear system matrix * x = rhs for x. Can only be called after do_numeric_factorization.

get_inertia()

Get the inertia of the factorized matrix. Can only be called after do_numeric_factorization.

4.1.5 Parallel Schur-Complement Linear Solver

class MPISchurComplementLinearSolver(subproblem_solvers: Dict[int, LinearSolverInterface],
schur_complement_solver: LinearSolverInterface)

Bases: LinearSolverInterface

Solve the system Ax = b.

A must be block-bordered-diagonal and symmetric:

K1 transpose(A1)
K2 transpose(A2)

K3 transpose(A3)
A1 A2 A3 Q

Only the lower diagonal needs supplied.

Some assumptions are made on the block matrices provided to do_symbolic_factorization and
do_numeric_factorization:

• Q must be owned by all processes

4.1. parapint.linalg 9



, Release 0.1.0.dev

• K i and A i must be owned by the same process

Parameters

subproblem_solvers: dict
Dictionary mapping block index to linear solver

schur_complement_solver: LinearSolverInterface
Linear solver to use for factorizing the schur complement

do_symbolic_factorization(matrix: MPIBlockMatrix, raise_on_error: bool = True, timer:
Optional[HierarchicalTimer] = None)→ LinearSolverResults

Perform symbolic factorization. This performs symbolic factorization for each diagonal block and col-
lects some information on the structure of the schur complement for sparse communication in the numeric
factorization phase.

Parameters

matrix: MPIBlockMatrix
A Pynumero MPIBlockMatrix. This is the A matrix in Ax=b

raise_on_error: bool
If False, an error will not be raised if an error occurs during symbolic factorization. Instead
the status attribute of the results object will indicate an error ocurred.

timer: HierarchicalTimer
A timer for profiling.

Returns

res: LinearSolverResults
The results object

do_numeric_factorization(matrix: MPIBlockMatrix, raise_on_error: bool = True, timer:
Optional[HierarchicalTimer] = None)→ LinearSolverResults

Perform numeric factorization:

• perform numeric factorization on each diagonal block

• form and communicate the Schur-Complement

• factorize the schur-complement

This method should only be called after do_symbolic_factorization.

Parameters

matrix: MPIBlockMatrix
A Pynumero MPIBlockMatrix. This is the A matrix in Ax=b

raise_on_error: bool
If False, an error will not be raised if an error occurs during symbolic factorization. Instead
the status attribute of the results object will indicate an error ocurred.

timer: HierarchicalTimer
A timer for profiling.

Returns

res: LinearSolverResults
The results object

4.1. parapint.linalg 10



, Release 0.1.0.dev

do_back_solve(rhs, timer=None)
Performs a back solve with the factorized matrix. Should only be called after do_numeric_factorixation.

Parameters

rhs: MPIBlockVector
timer: HierarchicalTimer

Returns

result: MPIBlockVector

get_inertia()

Get the inertia. Should only be called after do_numeric_factorization.

Returns

num_pos: int
The number of positive eigenvalues of A

num_neg: int
The number of negative eigenvalues of A

num_zero: int
The number of zero eigenvalues of A

increase_memory_allocation(factor)
Increases the memory allocation of each sub-solver. This method should only be called if the results status
from do_symbolic_factorization or do_numeric_factorization is LinearSolverStatus.not_enough_memory.

Parameters

factor: float
The factor by which to increase memory allocation. Should be greater than 1.

4.2 parapint.algorithms

4.2.1 InteriorPoint

4.3 parapint.interfaces

4.3.1 Base IP Interface

class BaseInteriorPointInterface

Bases: ABC

A base class for interfacing with Parapint’s interior point algorithm. This class is responsible for function eval-
uations and for building the KKT system (matrix and rhs).

4.2. parapint.algorithms 11



, Release 0.1.0.dev

4.3.2 IP Interface

class InteriorPointInterface(pyomo_model)
Bases: BaseInteriorPointInterface

4.3.3 Dynamic SC IP Interface

class DynamicSchurComplementInteriorPointInterface(start_t: float, end_t: float, num_time_blocks: int)
Bases: BaseInteriorPointInterface

A class for interfacing with Parapint’s interior point algorithm for the serial solution of dynamic optimization
problems. This class is primarily for testing purposes. Users should favor the MPIDynamicSchurComplementIn-
teriorPointInterface class because it supports parallel solution. To utilize this class, create a class which inherits
from this class and implement the build_model_for_time_block method. If you override the __init__ method
make sure to call the super class’ __init__ method at the end of the derived class’ __init__ method. See ex1.py
in the examples directory for an example.

Parameters

start_t: float
The starting time for the dynamic optimization problem

end_t: float
The final time for the dynamic optimization problem

num_time_blocks: int
The number of time blocks to split the time horizon into for parallel solution. This is typically
equal to the number of processes available (i.e., comm.Get_size()).

abstract build_model_for_time_block(ndx: int, start_t: float, end_t: float, add_init_conditions: bool)
→ Tuple[_BlockData, Sequence[_GeneralVarData],
Sequence[_GeneralVarData]]

This method should be implemented by derived classes. This method should build (and return) the model
for the time interval [start_t, end_t] and return a list of states at start_t and a list of states at end_t (in the
same order). This method will be called once for each time block. The start_states and end_states returned
by this method must be in the same order for every time block.

Parameters

ndx: int
The time block index

start_t: float
end_t: float
add_init_conditions: bool

This will only be True for time block 0.

Returns

pyomo_model: pyomo.core.base.block.Block
The model for the time interval [start_t, end_t].

start_states: Sequence of _GeneralVarData
a list of the states at start_t; the order of this list should be the same for every time block

end_states: Sequence of _GeneralVarData
a list of the states at end_t; the order of this list should be the same for every time block

4.3. parapint.interfaces 12



, Release 0.1.0.dev

n_primals()→ int

Returns

n_primals: int
The number of primal variables

primals_lb()→ BlockVector

Returns

primals_lb: BlockVector
The lower bounds for each primal variable. This BlockVector has one block for every time
block and one block for the coupling variables.

primals_ub()→ BlockVector

Returns

primals_ub: BlockVector
The upper bounds for each primal variable. This BlockVector has one block for every time
block and one block for the coupling variables.

init_primals()→ BlockVector

Returns

init_primals: BlockVector
The initial values for each primal variable. This BlockVector has one block for every time
block and one block for the coupling variables.

set_primals(primals: BlockVector)
Set the values of the primal variables for evaluation (i.e., the evaluate_* methods).

Parameters

primals: BlockVector
The values for each primal variable. This BlockVector should have one block for every
time block and one block for the coupling variables.

get_primals()→ BlockVector

Returns

primals: BlockVector
The values for each primal variable. This BlockVector has one block for every time block
and one block for the coupling variables.

evaluate_objective()→ float

Returns

objective_val: float
The value of the objective

evaluate_grad_objective()→ BlockVector

Returns

grad_obj: BlockVector
The gradient of the objective. This BlockVector has one block for every time block and
one block for the coupling variables.

4.3. parapint.interfaces 13



, Release 0.1.0.dev

n_eq_constraints()→ int

Returns

n_eq_constraints: int
The number of equality constraints, including the coupling constraints

n_ineq_constraints()→ int

Returns

n_ineq_constraints: int
The number of inequality constraints

ineq_lb()→ BlockVector

Returns

ineq_lb: BlockVector
The lower bounds for each inequality constraint. This BlockVector has one block for every
time block.

ineq_ub()→ BlockVector

Returns

ineq_lb: BlockVector
The lower bounds for each inequality constraint. This BlockVector has one block for every
time block.

init_duals_eq()→ BlockVector

Returns

init_duals_eq: BlockVector
The initial values for the duals of the equality constraints, including the coupling con-
straints. This BlockVector has one block for every time block. Each block is itself a Block-
Vector with 3 blocks. The first block contains the duals of the equality constraints in the
corresponding time block. The second block has the duals for the coupling constraints
linking the states at the beginning of the time block to the coupling variables between the
time block and the previous time block. The third block has the duals for the coupling
constraints linking the states at the end of the time block to the coupling variables between
the time block and the next time block.

init_duals_ineq()→ BlockVector

Returns

init_duals_ineq: BlockVector
The initial values for the duals of the inequality constraints. This BlockVector has one
block for every time block.

set_duals_eq(duals_eq: BlockVector)

Parameters

duals_eq: BlockVector
The values for the duals of the equality constraints, including the coupling constraints. This
BlockVector has one block for every time block. Each block is itself a BlockVector with 3
blocks. The first block contains the duals of the equality constraints in the corresponding
time block. The second block has the duals for the coupling constraints linking the states
at the beginning of the time block to the coupling variables between the time block and the

4.3. parapint.interfaces 14



, Release 0.1.0.dev

previous time block. The third block has the duals for the coupling constraints linking the
states at the end of the time block to the coupling variables between the time block and the
next time block.

set_duals_ineq(duals_ineq: BlockVector)

Parameters

duals_ineq: BlockVector
The values for the duals of the inequality constraints. This BlockVector has one block for
every time block.

get_duals_eq()→ BlockVector

Returns

duals_eq: BlockVector
The values for the duals of the equality constraints, including the coupling constraints. This
BlockVector has one block for every time block. Each block is itself a BlockVector with 3
blocks. The first block contains the duals of the equality constraints in the corresponding
time block. The second block has the duals for the coupling constraints linking the states
at the beginning of the time block to the coupling variables between the time block and the
previous time block. The third block has the duals for the coupling constraints linking the
states at the end of the time block to the coupling variables between the time block and the
next time block.

get_duals_ineq()→ BlockVector

Returns

duals_ineq: BlockVector
The values for the duals of the inequality constraints. This BlockVector has one block for
every time block.

evaluate_eq_constraints()→ BlockVector

Returns

eq_resid: BlockVector
The residuals of the equality constraints, including the coupling constraints. This Block-
Vector has one block for every time block. Each block is itself a BlockVector with 3 blocks.
The first block contains the residuals of the equality constraints in the corresponding time
block. The second block has the residuals for the coupling constraints linking the states at
the beginning of the time block to the coupling variables between the time block and the
previous time block. The third block has the residuals for the coupling constraints linking
the states at the end of the time block to the coupling variables between the time block and
the next time block.

evaluate_ineq_constraints()→ BlockVector

Returns

ineq_resid: BlockVector
The residuals of the inequality constraints. This BlockVector has one block for every time
block.

evaluate_jacobian_eq()→ BlockMatrix

Returns

4.3. parapint.interfaces 15



, Release 0.1.0.dev

jac_eq: BlockMatrix
The jacobian of the equality constraints. The rows have the same structure as the Block-
Vector returned from evaluate_eq_constraints. The columns have the same structure as the
BlockVector returned from get_primals.

evaluate_jacobian_ineq()→ BlockMatrix

Returns

jac_ineq: BlockMatrix
The jacobian of the inequality constraints. The rows have the same structure as the Block-
Vector returned from evaluate_ineq_constraints. The columns have the same structure as
the BlockVector returned from get_primals.

load_primals_into_pyomo_model()

This method takes the current values for the primal variables (those you would get from the get_primals()
method), and loads them into the corresponding Pyomo variables.

pyomo_model(ndx: int)→ _BlockData

Parameters

ndx: int
The index of the time block for which the pyomo model should be returned.

Returns

m: _BlockData
The pyomo model for the time block corresponding to ndx.

get_pyomo_variables(ndx: int)→ Sequence[_GeneralVarData]

Parameters

ndx: int
The index of the time block for which pyomo variables should be returned

Returns

pyomo_vars: list of _GeneralVarData
The pyomo variables in the model for the time block corresponding to ndx

get_pyomo_constraints(ndx: int)→ Sequence[_GeneralConstraintData]

Parameters

ndx: int
The index of the time block for which pyomo constraints should be returned

Returns

pyomo_cons: list of _GeneralConstraintData
The pyomo constraints in the model for the time block corresponding to ndx

get_primal_indices(ndx: int, pyomo_variables: Sequence[_GeneralVarData])→ Sequence[int]

Parameters

ndx: int
The index of the time block

pyomo_variables: Sequence of _GeneralVarData
The pyomo variables for which the indices should be returned

Returns

4.3. parapint.interfaces 16



, Release 0.1.0.dev

var_indices: Sequence of int
The indices of the corresponding pyomo variables. Note that these indices correspond to
the specified time block, not the overall indices. In other words, the indices that are returned
are the indices into the block within get_primals corresponding to ndx.

get_constraint_indices(ndx, pyomo_constraints)→ Sequence[int]

Parameters

ndx: int
The index of the time block

pyomo_constraints: Sequence of _GeneralConstraintData
The pyomo constraints for which the indices should be returned

Returns

con_indices: Sequence of int
The indices of the corresponding pyomo constraints. Note that these indices correspond to
the specified time block, not the overall indices.

4.3.4 MPI Dynamic SC IP Interface

class MPIDynamicSchurComplementInteriorPointInterface(start_t: float, end_t: float, num_time_blocks:
int, comm: Comm)

Bases: DynamicSchurComplementInteriorPointInterface

A class for interfacing with Parapint’s interior point algorithm for the parallel solution of dynamic optimiza-
tion problems using Schur-Complement decomposition. Users should inherit from this class and, at a mini-
mum, implement the build_model_for_time_block method (see DynamicSchurComplementInteriorPointInter-
face.build_model_for_time_block for details).

Parameters

start_t: float
The starting time for the dynamic optimization problem

end_t: float
The final time for the dynamic optimization problem

num_time_blocks: int
The number of time blocks to split the time horizon into for parallel solution. This is typically
equal to the number of processes available (i.e., comm.Get_size()).

comm: MPI.Comm
The MPI communicator to use. Typically, this is mpi4py.MPI.COMM_WORLD.

n_primals()→ int

Returns

n_primals: int
The number of primal variables

evaluate_objective()→ float

Returns

objective_val: float
The value of the objective

4.3. parapint.interfaces 17



, Release 0.1.0.dev

n_eq_constraints()→ int

Returns

n_eq_constraints: int
The number of equality constraints, including the coupling constraints

n_ineq_constraints()→ int

Returns

n_ineq_constraints: int
The number of inequality constraints

property ownership_map: Dict[int, int]

Returns

ownership_map: dict
This is a map from the time block index to the rank that owns that time block.

property local_block_indices: Sequence[int]

Returns

local_block_indices: list
The indices of the time blocks owned by the current process.

abstract build_model_for_time_block(ndx: int, start_t: float, end_t: float, add_init_conditions: bool)
→ Tuple[_BlockData, Sequence[_GeneralVarData],
Sequence[_GeneralVarData]]

This method should be implemented by derived classes. This method should build (and return) the model
for the time interval [start_t, end_t] and return a list of states at start_t and a list of states at end_t (in the
same order). This method will be called once for each time block. The start_states and end_states returned
by this method must be in the same order for every time block.

Parameters

ndx: int
The time block index

start_t: float
end_t: float
add_init_conditions: bool

This will only be True for time block 0.

Returns

pyomo_model: pyomo.core.base.block.Block
The model for the time interval [start_t, end_t].

start_states: Sequence of _GeneralVarData
a list of the states at start_t; the order of this list should be the same for every time block

end_states: Sequence of _GeneralVarData
a list of the states at end_t; the order of this list should be the same for every time block

evaluate_eq_constraints()→ BlockVector

Returns

eq_resid: BlockVector
The residuals of the equality constraints, including the coupling constraints. This Block-
Vector has one block for every time block. Each block is itself a BlockVector with 3 blocks.

4.3. parapint.interfaces 18



, Release 0.1.0.dev

The first block contains the residuals of the equality constraints in the corresponding time
block. The second block has the residuals for the coupling constraints linking the states at
the beginning of the time block to the coupling variables between the time block and the
previous time block. The third block has the residuals for the coupling constraints linking
the states at the end of the time block to the coupling variables between the time block and
the next time block.

evaluate_grad_objective()→ BlockVector

Returns

grad_obj: BlockVector
The gradient of the objective. This BlockVector has one block for every time block and
one block for the coupling variables.

evaluate_ineq_constraints()→ BlockVector

Returns

ineq_resid: BlockVector
The residuals of the inequality constraints. This BlockVector has one block for every time
block.

evaluate_jacobian_eq()→ BlockMatrix

Returns

jac_eq: BlockMatrix
The jacobian of the equality constraints. The rows have the same structure as the Block-
Vector returned from evaluate_eq_constraints. The columns have the same structure as the
BlockVector returned from get_primals.

evaluate_jacobian_ineq()→ BlockMatrix

Returns

jac_ineq: BlockMatrix
The jacobian of the inequality constraints. The rows have the same structure as the Block-
Vector returned from evaluate_ineq_constraints. The columns have the same structure as
the BlockVector returned from get_primals.

get_constraint_indices(ndx, pyomo_constraints)→ Sequence[int]

Parameters

ndx: int
The index of the time block

pyomo_constraints: Sequence of _GeneralConstraintData
The pyomo constraints for which the indices should be returned

Returns

con_indices: Sequence of int
The indices of the corresponding pyomo constraints. Note that these indices correspond to
the specified time block, not the overall indices.

get_duals_eq()→ BlockVector

Returns

4.3. parapint.interfaces 19



, Release 0.1.0.dev

duals_eq: BlockVector
The values for the duals of the equality constraints, including the coupling constraints. This
BlockVector has one block for every time block. Each block is itself a BlockVector with 3
blocks. The first block contains the duals of the equality constraints in the corresponding
time block. The second block has the duals for the coupling constraints linking the states
at the beginning of the time block to the coupling variables between the time block and the
previous time block. The third block has the duals for the coupling constraints linking the
states at the end of the time block to the coupling variables between the time block and the
next time block.

get_duals_ineq()→ BlockVector

Returns

duals_ineq: BlockVector
The values for the duals of the inequality constraints. This BlockVector has one block for
every time block.

get_primal_indices(ndx: int, pyomo_variables: Sequence[_GeneralVarData])→ Sequence[int]

Parameters

ndx: int
The index of the time block

pyomo_variables: Sequence of _GeneralVarData
The pyomo variables for which the indices should be returned

Returns

var_indices: Sequence of int
The indices of the corresponding pyomo variables. Note that these indices correspond to
the specified time block, not the overall indices. In other words, the indices that are returned
are the indices into the block within get_primals corresponding to ndx.

get_primals()→ BlockVector

Returns

primals: BlockVector
The values for each primal variable. This BlockVector has one block for every time block
and one block for the coupling variables.

get_pyomo_constraints(ndx: int)→ Sequence[_GeneralConstraintData]

Parameters

ndx: int
The index of the time block for which pyomo constraints should be returned

Returns

pyomo_cons: list of _GeneralConstraintData
The pyomo constraints in the model for the time block corresponding to ndx

get_pyomo_variables(ndx: int)→ Sequence[_GeneralVarData]

Parameters

ndx: int
The index of the time block for which pyomo variables should be returned

Returns

4.3. parapint.interfaces 20



, Release 0.1.0.dev

pyomo_vars: list of _GeneralVarData
The pyomo variables in the model for the time block corresponding to ndx

ineq_lb()→ BlockVector

Returns

ineq_lb: BlockVector
The lower bounds for each inequality constraint. This BlockVector has one block for every
time block.

ineq_ub()→ BlockVector

Returns

ineq_lb: BlockVector
The lower bounds for each inequality constraint. This BlockVector has one block for every
time block.

init_duals_eq()→ BlockVector

Returns

init_duals_eq: BlockVector
The initial values for the duals of the equality constraints, including the coupling con-
straints. This BlockVector has one block for every time block. Each block is itself a Block-
Vector with 3 blocks. The first block contains the duals of the equality constraints in the
corresponding time block. The second block has the duals for the coupling constraints
linking the states at the beginning of the time block to the coupling variables between the
time block and the previous time block. The third block has the duals for the coupling
constraints linking the states at the end of the time block to the coupling variables between
the time block and the next time block.

init_duals_ineq()→ BlockVector

Returns

init_duals_ineq: BlockVector
The initial values for the duals of the inequality constraints. This BlockVector has one
block for every time block.

init_primals()→ BlockVector

Returns

init_primals: BlockVector
The initial values for each primal variable. This BlockVector has one block for every time
block and one block for the coupling variables.

load_primals_into_pyomo_model()

This method takes the current values for the primal variables (those you would get from the get_primals()
method), and loads them into the corresponding Pyomo variables.

primals_lb()→ BlockVector

Returns

primals_lb: BlockVector
The lower bounds for each primal variable. This BlockVector has one block for every time
block and one block for the coupling variables.

4.3. parapint.interfaces 21



, Release 0.1.0.dev

primals_ub()→ BlockVector

Returns

primals_ub: BlockVector
The upper bounds for each primal variable. This BlockVector has one block for every time
block and one block for the coupling variables.

pyomo_model(ndx: int)→ _BlockData

Parameters

ndx: int
The index of the time block for which the pyomo model should be returned.

Returns

m: _BlockData
The pyomo model for the time block corresponding to ndx.

set_duals_eq(duals_eq: BlockVector)

Parameters

duals_eq: BlockVector
The values for the duals of the equality constraints, including the coupling constraints. This
BlockVector has one block for every time block. Each block is itself a BlockVector with 3
blocks. The first block contains the duals of the equality constraints in the corresponding
time block. The second block has the duals for the coupling constraints linking the states
at the beginning of the time block to the coupling variables between the time block and the
previous time block. The third block has the duals for the coupling constraints linking the
states at the end of the time block to the coupling variables between the time block and the
next time block.

set_duals_ineq(duals_ineq: BlockVector)

Parameters

duals_ineq: BlockVector
The values for the duals of the inequality constraints. This BlockVector has one block for
every time block.

set_primals(primals: BlockVector)
Set the values of the primal variables for evaluation (i.e., the evaluate_* methods).

Parameters

primals: BlockVector
The values for each primal variable. This BlockVector should have one block for every
time block and one block for the coupling variables.

4.3. parapint.interfaces 22



CHAPTER

FIVE

SANDIA FUNDING STATEMENT

This work was supported by Sandia National Laboratories’ Laboratory Directed Research and Development program.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

23



CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

24



BIBLIOGRAPHY

[Word2014] Word, D. P., Kang, J., Akesson, J., & Laird, C. D. (2014). Efficient parallel solution of large-scale non-
linear dynamic optimization problems. Computational Optimization and Applications, 59(3), 667-688.

25



PYTHON MODULE INDEX

p
parapint, 6
parapint.algorithms, 11
parapint.interfaces, 11
parapint.linalg, 6

26



INDEX

B
BaseInteriorPointInterface (class in parap-

int.interfaces.interface), 11
build_model_for_time_block() (DynamicSchur-

ComplementInteriorPointInterface method),
12

build_model_for_time_block() (MPIDynam-
icSchurComplementInteriorPointInterface
method), 18

D
do_back_solve() (InteriorPointMA27Interface

method), 8
do_back_solve() (LinearSolverInterface method), 6
do_back_solve() (MPISchurComplementLinearSolver

method), 10
do_back_solve() (MumpsInterface method), 9
do_back_solve() (ScipyInterface method), 9
do_numeric_factorization() (Interior-

PointMA27Interface method), 7
do_numeric_factorization() (LinearSolverInterface

method), 6
do_numeric_factorization() (MPISchurComple-

mentLinearSolver method), 10
do_numeric_factorization() (MumpsInterface

method), 9
do_numeric_factorization() (ScipyInterface

method), 9
do_symbolic_factorization() (Interior-

PointMA27Interface method), 7
do_symbolic_factorization() (LinearSolverInter-

face method), 6
do_symbolic_factorization() (MPISchurComple-

mentLinearSolver method), 10
do_symbolic_factorization() (MumpsInterface

method), 9
do_symbolic_factorization() (ScipyInterface

method), 9
DynamicSchurComplementInteriorPointInterface

(class in parap-
int.interfaces.schur_complement.sc_ip_interface),
12

E
evaluate_eq_constraints() (DynamicSchurComple-

mentInteriorPointInterface method), 15
evaluate_eq_constraints() (MPIDynamicSchur-

ComplementInteriorPointInterface method),
18

evaluate_grad_objective() (DynamicSchurComple-
mentInteriorPointInterface method), 13

evaluate_grad_objective() (MPIDynamicSchur-
ComplementInteriorPointInterface method),
19

evaluate_ineq_constraints() (DynamicSchurCom-
plementInteriorPointInterface method), 15

evaluate_ineq_constraints() (MPIDynamicSchur-
ComplementInteriorPointInterface method), 19

evaluate_jacobian_eq() (DynamicSchurComple-
mentInteriorPointInterface method), 15

evaluate_jacobian_eq() (MPIDynamicSchurCom-
plementInteriorPointInterface method), 19

evaluate_jacobian_ineq() (DynamicSchurComple-
mentInteriorPointInterface method), 16

evaluate_jacobian_ineq() (MPIDynamicSchur-
ComplementInteriorPointInterface method),
19

evaluate_objective() (DynamicSchurComple-
mentInteriorPointInterface method), 13

evaluate_objective() (MPIDynamicSchurComple-
mentInteriorPointInterface method), 17

G
get_cntl() (InteriorPointMA27Interface method), 8
get_constraint_indices() (DynamicSchurComple-

mentInteriorPointInterface method), 17
get_constraint_indices() (MPIDynamicSchur-

ComplementInteriorPointInterface method),
19

get_duals_eq() (DynamicSchurComplementInterior-
PointInterface method), 15

get_duals_eq() (MPIDynamicSchurComplementInte-
riorPointInterface method), 19

get_duals_ineq() (DynamicSchurComplementInteri-
orPointInterface method), 15

27



, Release 0.1.0.dev

get_duals_ineq() (MPIDynamicSchurComplementIn-
teriorPointInterface method), 20

get_icntl() (InteriorPointMA27Interface method), 8
get_inertia() (InteriorPointMA27Interface method), 8
get_inertia() (LinearSolverInterface method), 6
get_inertia() (MPISchurComplementLinearSolver

method), 11
get_inertia() (MumpsInterface method), 9
get_inertia() (ScipyInterface method), 9
get_primal_indices() (DynamicSchurComple-

mentInteriorPointInterface method), 16
get_primal_indices() (MPIDynamicSchurComple-

mentInteriorPointInterface method), 20
get_primals() (DynamicSchurComplementInterior-

PointInterface method), 13
get_primals() (MPIDynamicSchurComplementInteri-

orPointInterface method), 20
get_pyomo_constraints() (DynamicSchurComple-

mentInteriorPointInterface method), 16
get_pyomo_constraints() (MPIDynamicSchurCom-

plementInteriorPointInterface method), 20
get_pyomo_variables() (DynamicSchurComple-

mentInteriorPointInterface method), 16
get_pyomo_variables() (MPIDynamicSchurComple-

mentInteriorPointInterface method), 20

I
increase_memory_allocation() (Interior-

PointMA27Interface method), 7
increase_memory_allocation() (MPISchurComple-

mentLinearSolver method), 11
ineq_lb() (DynamicSchurComplementInteriorPointIn-

terface method), 14
ineq_lb() (MPIDynamicSchurComplementInterior-

PointInterface method), 21
ineq_ub() (DynamicSchurComplementInteriorPointIn-

terface method), 14
ineq_ub() (MPIDynamicSchurComplementInterior-

PointInterface method), 21
init_duals_eq() (DynamicSchurComplementInterior-

PointInterface method), 14
init_duals_eq() (MPIDynamicSchurComplementIn-

teriorPointInterface method), 21
init_duals_ineq() (DynamicSchurComplementInteri-

orPointInterface method), 14
init_duals_ineq() (MPIDynamicSchurComple-

mentInteriorPointInterface method), 21
init_primals() (DynamicSchurComplementInterior-

PointInterface method), 13
init_primals() (MPIDynamicSchurComplementInte-

riorPointInterface method), 21
InteriorPointInterface (class in parap-

int.interfaces.interface), 12

InteriorPointMA27Interface (class in parap-
int.linalg.ma27_interface), 6

L
LinearSolverInterface (class in parap-

int.linalg.base_linear_solver_interface),
6

load_primals_into_pyomo_model() (DynamicSchur-
ComplementInteriorPointInterface method), 16

load_primals_into_pyomo_model() (MPIDynam-
icSchurComplementInteriorPointInterface
method), 21

local_block_indices (MPIDynamicSchurComple-
mentInteriorPointInterface property), 18

M
module

parapint, 6
parapint.algorithms, 11
parapint.interfaces, 11
parapint.linalg, 6

MPIDynamicSchurComplementInteriorPointInterface
(class in parap-
int.interfaces.schur_complement.mpi_sc_ip_interface),
17

MPISchurComplementLinearSolver (class in parap-
int.linalg.schur_complement.mpi_explicit_schur_complement),
9

MumpsInterface (class in parap-
int.linalg.mumps_interface), 9

N
n_eq_constraints() (DynamicSchurComplementInte-

riorPointInterface method), 13
n_eq_constraints() (MPIDynamicSchurComple-

mentInteriorPointInterface method), 17
n_ineq_constraints() (DynamicSchurComple-

mentInteriorPointInterface method), 14
n_ineq_constraints() (MPIDynamicSchurComple-

mentInteriorPointInterface method), 18
n_primals() (DynamicSchurComplementInterior-

PointInterface method), 12
n_primals() (MPIDynamicSchurComplementInterior-

PointInterface method), 17

O
ownership_map (MPIDynamicSchurComplementInteri-

orPointInterface property), 18

P
parapint

module, 6
parapint.algorithms

Index 28



, Release 0.1.0.dev

module, 11
parapint.interfaces
module, 11

parapint.linalg
module, 6

primals_lb() (DynamicSchurComplementInterior-
PointInterface method), 13

primals_lb() (MPIDynamicSchurComplementInterior-
PointInterface method), 21

primals_ub() (DynamicSchurComplementInterior-
PointInterface method), 13

primals_ub() (MPIDynamicSchurComplementInterior-
PointInterface method), 21

pyomo_model() (DynamicSchurComplementInterior-
PointInterface method), 16

pyomo_model() (MPIDynamicSchurComplementInteri-
orPointInterface method), 22

S
ScipyInterface (class in parap-

int.linalg.scipy_interface), 9
set_cntl() (InteriorPointMA27Interface method), 8
set_duals_eq() (DynamicSchurComplementInterior-

PointInterface method), 14
set_duals_eq() (MPIDynamicSchurComplementInte-

riorPointInterface method), 22
set_duals_ineq() (DynamicSchurComplementInteri-

orPointInterface method), 15
set_duals_ineq() (MPIDynamicSchurComplementIn-

teriorPointInterface method), 22
set_icntl() (InteriorPointMA27Interface method), 8
set_primals() (DynamicSchurComplementInterior-

PointInterface method), 13
set_primals() (MPIDynamicSchurComplementInteri-

orPointInterface method), 22

Index 29


	Overview
	Installation
	Requirements

	Solving Dynamic Optimization Problems with Schur-Complement Decomposition
	API documentation
	parapint.linalg
	Base Linear Solver Class
	MA27 Interface
	MumpsInterface
	ScipyInterface
	Parallel Schur-Complement Linear Solver

	parapint.algorithms
	InteriorPoint

	parapint.interfaces
	Base IP Interface
	IP Interface
	Dynamic SC IP Interface
	MPI Dynamic SC IP Interface


	Sandia Funding Statement
	Indices and tables

