Parapint

Michael Bynum Carl Laird Bethany Nicholson Denis Ridzal

Mar 18, 2022

1 Overview

2 Installation

2.1 Requirements e e e e e e e e

3 Solving Dynamic Optimization Problems with Schur-Complement Decomposition

4 API documentation

4.1 parapintlinalgo
4.1.1 BaseLinearSolverClass
4.12 MA27Interface
4.13 MumpsInterface oL
4.1.4 Scipylnterface oo
4.1.5 Parallel Schur-Complement Linear Solver
4.2 parapint.algorithms
4.2.1 InteriorPoint o
4.3 parapintinterfaces L. L
43.1 BaselIPInterface
432 TIPInterface e
433 Dynamic SCIPInterface
4.3.4 MPI Dynamic SCIP Interface

5 Sandia Funding Statement

6 Indices and tables

Parapint is a Python Package for parallel solution of dynamic optimization problems.

CONTENTS:

.......... 11

CHAPTER
ONE

OVERVIEW

Parapint is a package for parallel solution of dynamic optimization problems. Parapint currently includes a Schur-
Complement decomposition algorithm based on [Word2014]. Parapint utilizes Pynumero BlockVector and BlockMatrix
classes (which in turn utilize Numpy arrays and Scipy sparse matrices) for efficient block-based linear algebra operations
such as block-matrix, block-vector dot products. These classes enable convenient construction of block-structured KKT
systems. Parapint also utilizes Pynumero interfaces to efficient numerical routines in C, C++, and Fortran, including
the AMPL Solver Library (ASL), MUMPS, and the MA27 routines from the Harwell Subroutine Library (HSL).

Parapint is designed with three primary modules:

* The algorithms. The algorithms drive the solution process and perform high level operations such as the fraction-
to-the boundary rule or inertia correction for the interior point algorithm. The interior point algorithm is designed
to work with any BaseInteriorPointInterface and any LinearSolverInterface as long as the interface
and the linear solver are compatible.

 The interfaces. All interfaces should inherit from BaseInteriorPointInterface and implement all abstract
methods. These are the methods required by the interior point algorithm. The interfaces are designed to work
with a subset of linear solvers. The table below outlines which interfaces work with which linear solvers.

* The linear solvers. All linear solvers should inherit from LinearSolverInterface and implement all abstract
methods. These are the methods required by the interior point algorithm. The linear solvers are designed to work
with certain interface classes. The table below outlines which linear solvers work with which interfaces.

Table 1: Compatible linear solvers and interfaces

Linear Solver Compatible Interface Class
InteriorPointMA27Interface InteriorPointInterface

MumpsInterface InteriorPointInterface

ScipylInterface InteriorPointInterface
SchurComplementLinearSolver DynamicSchurComplementInteriorPointInterface
MPISchurComplementLinearSolver | MPIDynamicSchurComplementInteriorPointInterface

CHAPTER
TWO

INSTALLATION

Parapint can be installed by cloning the parapint repository from https://github.com/parapint/parapint

git clone https://github.com/parapint/parapint.git
cd parapint/
python setup.py install

2.1 Requirements

Parapint requires Python (at least version 3.7) and the following packages:
* Numpy (version 1.13.0 or greater)
* Scipy
* Pyomo (Parapint currently only works with the master branch of Pyomo)

Pyomo should be installed from source and used to build Pynumero extensions:

pip install numpy

pip install scipy

git clone https://github.com/pyomo/pyomo.git

cd pyomo/

python setup.py install

cd pyomo/contrib/pynumero/

python build.py -DBUILD_ASL=ON -DBUILD_MA27=ON -DIPOPT_DIR-<path/to/ipopt/build/>

Pymumps also needs to be installed in order to use MUMPS:

conda install pymumps

https://github.com/parapint/parapint

CHAPTER
THREE

SOLVING DYNAMIC OPTIMIZATION PROBLEMS WITH
SCHUR-COMPLEMENT DECOMPOSITION

In order to solve a dynamic optimization problem with schur-complement decomposition, you must create a class which
inherits from MPIDynamicSchurComplementInteriorPointInterface. This class must implement the method
build_model_for_time_block():

import parapint

class Problem(parapint.interfaces.MPIDynamicSchurComplementInteriorPointInterface):
def __init__(self, your_arguments):
do anything you need to here
super (Problem, self).__init__(start_t, end_t, num_time_blocks, mpi_comm)

def build_model_for_time_block(self, ndx, start_t, end_t, add_init_conditions):
build the dynamic optimization problem with Pyomo over the time horizon
[start_t, end_t] and return the model along with two lists. The first

list should be a list of pyomo variables corresponding to the states at
start_t. The second list should be a list of pyomo variables

corresponding to the states at end_t. Continuity will be enforced

between the states at end_t for one time block

and the states at start_t for the next time block. It is very important for
the ordering of the state variables to be the same for every time block.

S R R R

return model, start_states, end_states

problem = Problem(some_arguments)

The build_model_for_time_block () method will be called once for every time block. It will be called within the
call to __init__() of the super class (MPIDynamicSchurComplementInteriorPointInterface). Therefore, if
you override the __init__ method, it is very important to still call the __iniz __ method of the base class as shown above.
There is an example class in schur_complement.py in the examples directory within Parapint.

In addition to the implementation of the class described above, you must create an instance of
MPISchurComplementLinearSolver. This linear solver requires a sub-solver for every time block:

cntl_options = {1: le-6} # the pivot tolerance

sub_solvers = {ndx: parapint.linalg.InteriorPointMA27Interface(cntl_options=cntl_
—options) for ndx in range(num_time_blocks)}

schur_complement_solver = parapint.linalg.InteriorPointMA27Interface(cntl_options=cntl_
—options)

linear_solver = parapint.linalg.MPISchurComplementLinearSolver (subproblem_solvers=sub_
—solvers,

(continues on next page)

, Release 0.1.0.dev

(continued from previous page)

schur_complement_
—.solver=schur_complement_solver)

The linear solver and interface instances can then be used with the interior point algorithm:

options = parapint.algorithms.IPOptions()
options.linalg.solver = linear_solver
status = parapint.algorithms.ip_solve(interface, options)
assert status == parapint.interior_point.InteriorPointStatus.optimal
problem.load_primals_into_pyomo_model ()
for ndx in problem.local_block_indices:
model = problem.pyomo_model (ndx)
model . pprint ()

CHAPTER
FOUR

API DOCUMENTATION

4.1 parapint.linalg

4.1.1 Base Linear Solver Class

class LinearSolverInterface
Bases: abc.ABC

This is the base class for linear solvers that work with the interior point algorithm. Derived classes must imple-
ment the following abstract methods:

* do_symbolic_factorization
¢ do_numeric_factorization
¢ do_back_solve

¢ get_inertia

abstract do_symbolic_factorization(matrix, raise_on_error=True, timer=None)
Perform symbolic factorization with the nonzero structure of the matrix.

abstract do_numeric_factorization(matrix, raise_on_error=True, timer=None)
Factorize the matrix. Can only be called after do_symbolic_factorization.

abstract do_back_solve(7hs)
Solve the linear system matrix * x = rhs for x. Can only be called after do_numeric_factorization.

abstract get_inertia()
Get the inertia of the factorized matrix. Can only be called after do_numeric_factorization.

4.1.2 MA27 Interface

class InteriorPointMA27Interface(cntl_options=None, icntl_options=None, iw_factor=1.2, a_factor=2)
Bases: parapint.linalg.base_linear_solver_interface.LinearSolverInterface

An interface to HSL's MA27 routines for use with Parapint’s interior point algorithm. See http://www.hsl.rl.ac.
uk/archive/specs/ma27.pdf for details on the use of MA27.

Note: The pivot tolerance, cntl(1), should be selected carefully. Larger values result in better precision but
smaller values result in better performance.

Parameters

http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf
http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf

, Release 0.1.0.dev

cntl_options: dict See http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf
icntl_options: dict See http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf

iw_factor: float The factor for memory allocation of the integer working arrays used by MA27.
This value is increased by the increase_memory_allocation method.

a_factor: float The factor for memory allocation of the A array used by MA28. This value is
increased by the increase_memory_allocation_method.

do_symbolic_factorization(matrix, raise_on_error=True, timer=None)
Perform symbolic factorization. This calls the MA27A/AD routines.

Parameters

matrix: scipy.sparse.spmatrix or pyomo.contrib.pynumero.sparse.block_matrix.BlockMatrix
The matrix to factorize

raise_on_error: bool If False, an error will not be raised if an error occurs during symbolic
factorization. Instead the status attribute of the results object will indicate an error ocurred.

timer: HierarchicalTimer

Returns

res: LinearSolverResults A LinearSolverResults object with a status attribute for the Lin-
earSolverStatus

do_numeric_factorization(matrix, raise_on_error=True, timer=None)
Perform numeric factorization. This calls the MA27B/BD routines.

Parameters

matrix: scipy.sparse.spmatrix or pyomo.contrib.pynumero.sparse.block_matrix.BlockMatrix
The matrix to factorize

raise_on_error: bool If False, an error will not be raised if an error occurs during numeric
factorization. Instead the status attribute of the results object will indicate an error ocurred.

timer: HierarchicalTimer

Returns

res: LinearSolverResults A LinearSolverResults object with a status attribute for the Lin-
earSolverStatus

increase_memory_allocation (factor)
Increas the memory allocation for factorization. This method should only be called if the results status from

do_symbolic_factorization or do_numeric_factorization is LinearSolverStatus.not_enough_memory.
Parameters

factor: float The factor by which to increase memory allocation. Should be greater than 1.

do_back_solve (rhs)
Performs a back solve with the factorized matrix. Should only be called after do_numeric_factorization.

Parameters
rhs: numpy.ndarray or BlockVector
Returns

result: numpy.ndarray or BlockVector

4.1. parapint.linalg 7

http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf
http://www.hsl.rl.ac.uk/archive/specs/ma27.pdf

, Release 0.1.0.dev

get_inertia()
Get the inertia. Should only be called after do_numeric_factorization.

Returns
num_pos: int The number of positive eigenvalues of A
num_neg: int The number of negative eigenvalues of A
num_zero: int The number of zero eigenvalues of A

set_icntl (key, value)
Set the value for an icntl option.

Parameters
key: int
value: int

set_cntl (key, value)
Set the value for a cntl option.

Parameters
key: int
value: float

get_icntl (key)
Get the value for an icntl option.

Parameters
key: int

Returns
val: int

get_cntl (key)
Get the value for a cntl option.

Parameters
key: int
Returns

val: float

4.1.3 Mumpsinterface

class MumpsInterface(par=1, comm=None, cntl_options=None, icntl_options=None)
Bases: parapint.linalg.base_linear_solver_interface.LinearSolverInterface

do_symbolic_factorization(matrix, raise_on_error=True, timer=None)
Perform symbolic factorization with the nonzero structure of the matrix.

do_numeric_factorization(matrix, raise_on_error=True, timer=None)
Factorize the matrix. Can only be called after do_symbolic_factorization.

do_back_solve (7hs)
Solve the linear system matrix * x = rhs for x. Can only be called after do_numeric_factorization.

4.1. parapint.linalg 8

, Release 0.1.0.dev

get_inertia()
Get the inertia of the factorized matrix. Can only be called after do_numeric_factorization.

4.1.4 Scipylnterface

class ScipyInterface(compute_inertia=False)
Bases: parapint.linalg.base_linear_solver_interface.LinearSolverInterface

do_symbolic_factorization(matrix, raise_on_error=True, timer=None)
Perform symbolic factorization with the nonzero structure of the matrix.

do_numeric_factorization(matrix, raise_on_error=True, timer=None)
Factorize the matrix. Can only be called after do_symbolic_factorization.

do_back_solve(rhs)
Solve the linear system matrix * x = rhs for x. Can only be called after do_numeric_factorization.

get_inertia()
Get the inertia of the factorized matrix. Can only be called after do_numeric_factorization.

4.1.5 Parallel Schur-Complement Linear Solver

class MPISchurComplementLinearSolver (subproblem_solvers: Dict[int,
parapint.linalg.base_linear_solver_interface.LinearSolverInterface],
schur_complement_solver:
parapint.linalg.base_linear_solver_interface.LinearSolverInterface)
Bases: parapint.linalg.base_linear_solver_interface.LinearSolverInterface

Solve the system Ax = b.

A must be block-bordered-diagonal and symmetric:

K1 transpose(Al)
K2 transpose(A2)
K3 transpose(A3)

Al A2 A3 Q

Only the lower diagonal needs supplied.

Some assumptions are made on the block matrices provided to do_symbolic_factorization and do_numeric_factorization:

* Q must be owned by all processes

* K and A ; must be owned by the same process

Parameters
subproblem_solvers: dict Dictionary mapping block index to linear solver

schur_complement_solver: LinearSolverInterface Linear solver to use for factorizing the
schur complement

4.1. parapint.linalg 9

, Release 0.1.0.dev

do_symbolic_factorization(marrix:

pyomo.contrib.pynumero.sparse.mpi_block_matrix. MPIBlockMatrix,
raise_on_error: bool = True, timer:
Optional[pyomo.common.timing.HierarchicalTimer] = None) —
parapint.linalg.results.LinearSolverResults

Perform symbolic factorization. This performs symbolic factorization for each diagonal block and col-

lects some information on the structure of the schur complement for sparse communication in the numeric

factorization phase.

Parameters
matrix: MPIBlockMatrix A Pynumero MPIBlockMatrix. This is the A matrix in Ax=b

raise_on_error: bool If False, an error will not be raised if an error occurs during symbolic
factorization. Instead the status attribute of the results object will indicate an error ocurred.

timer: HierarchicalTimer A timer for profiling.
Returns
res: LinearSolverResults The results object

do_numeric_factorization(matrix: pyomo.contrib.pynumero.sparse.mpi_block_matrix. MPIBlockMatrix,
raise_on_error: bool = True, timer:
Optional[pyomo.common.timing.HierarchicalTimer] = None) —
parapint.linalg.results.LinearSolverResults
Perform numeric factorization:
* perform numeric factorization on each diagonal block

 form and communicate the Schur-Complement

* factorize the schur-complement

This method should only be called after do_symbolic_factorization.
Parameters
matrix: MPIBlockMatrix A Pynumero MPIBlockMatrix. This is the A matrix in Ax=b

raise_on_error: bool If False, an error will not be raised if an error occurs during symbolic
factorization. Instead the status attribute of the results object will indicate an error ocurred.

timer: HierarchicalTimer A timer for profiling.
Returns
res: LinearSolverResults The results object

do_back_solve (rhs, timer=None)
Performs a back solve with the factorized matrix. Should only be called after do_numeric_factorixation.

Parameters
rhs: MPIBlockVector
timer: HierarchicalTimer
Returns
result: MPIBlockVector

get_inertia()
Get the inertia. Should only be called after do_numeric_factorization.

4.1.

parapint.linalg 10

, Release 0.1.0.dev

Returns
num_pos: int The number of positive eigenvalues of A
num_neg: int The number of negative eigenvalues of A
num_zero: int The number of zero eigenvalues of A

increase_memory_allocation (factor)
Increases the memory allocation of each sub-solver. This method should only be called if the results status
from do_symbolic_factorization or do_numeric_factorization is LinearSolverStatus.not_enough_memory.

Parameters

factor: float The factor by which to increase memory allocation. Should be greater than 1.

4.2 parapint.algorithms
4.2.1 InteriorPoint

4.3 parapint.interfaces

4.3.1 Base IP Interface

class BaseInteriorPointInterface
Bases: abc.ABC

A base class for interfacing with Parapint’s interior point algorithm. This class is responsible for function eval-
uations and for building the KKT system (matrix and rhs).

4.3.2 IP Interface

class InteriorPointInterface (pyomo_model)
Bases: parapint.interfaces.interface.BaselInteriorPointInterface

4.3.3 Dynamic SC IP Interface

class DynamicSchurComplementInteriorPointInterface(start_t: float, end_t: float, num_time_blocks: int)
Bases: parapint.interfaces.interface.BaselInteriorPointInterface

A class for interfacing with Parapint’s interior point algorithm for the serial solution of dynamic optimization
problems. This class is primarily for testing purposes. Users should favor the MPIDynamicSchurComplementIn-
teriorPointInterface class because it supports parallel solution. To utilize this class, create a class which inherits
from this class and implement the build_model_for_time_block method. If you override the __init__ method
make sure to call the super class’ __init__ method at the end of the derived class’ __init__ method. See ex1.py
in the examples directory for an example.

Parameters
start_t: float The starting time for the dynamic optimization problem
end_t: float The final time for the dynamic optimization problem

num_time_blocks: int The number of time blocks to split the time horizon into for parallel
solution. This is typically equal to the number of processes available (i.e., comm.Get_size()).

4.2. parapint.algorithms 11

, Release 0.1.0.dev

abstract build_model_for_time_block(ndx: int, start_t: float, end_t: float, add_init_conditions: bool)

— Tuple[pyomo.core.base.block._BlockData,
Sequence[pyomo.core.base.var._General VarData],
Sequence[pyomo.core.base.var._General VarData]]
This method should be implemented by derived classes. This method should build (and return) the model
for the time interval [start_t, end_t] and return a list of states at start_t and a list of states at end_t (in the
same order). This method will be called once for each time block. The start_states and end_states returned

by this method must be in the same order for every time block.
Parameters
ndx: int The time block index
start_t: float
end_t: float
add_init_conditions: bool This will only be True for time block 0.
Returns

pyomo_model: pyomo.core.base.block.Block The model for the time interval [start_t,
end_t].

start_states: Sequence of _GeneralVarData a list of the states at start_t; the order of this
list should be the same for every time block

end_states: Sequence of _GeneralVarData a list of the states at end_t; the order of this list
should be the same for every time block

n_primals() — int

Returns

n_primals: int The number of primal variables
primals_lb() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
primals_lb: BlockVector The lower bounds for each primal variable. This BlockVector has
one block for every time block and one block for the coupling variables.

primals_ub() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
primals_ub: BlockVector The upper bounds for each primal variable. This BlockVector
has one block for every time block and one block for the coupling variables.

init_primals() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
init_primals: BlockVector The initial values for each primal variable. This BlockVector
has one block for every time block and one block for the coupling variables.
set_primals (primals: pyomo.contrib.pynumero.sparse.block_vector.BlockVector)
Set the values of the primal variables for evaluation (i.e., the evaluate_* methods).

Parameters

4.3.

parapint.interfaces

12

, Release 0.1.0.dev

primals: BlockVector The values for each primal variable. This BlockVector should have
one block for every time block and one block for the coupling variables.

get_primals() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
primals: BlockVector The values for each primal variable. This BlockVector has one block
for every time block and one block for the coupling variables.

evaluate_objective() — float

Returns

objective_val: float The value of the objective
evaluate_grad_objective() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
grad_obj: BlockVector The gradient of the objective. This BlockVector has one block for
every time block and one block for the coupling variables.

n_eq_constraints() — int

Returns
n_eq_constraints: int The number of equality constraints, including the coupling con-
straints

n_ineq_constraints() — int

Returns

n_ineq_constraints: int The number of inequality constraints
ineq_1b() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
ineq_lb: BlockVector The lower bounds for each inequality constraint. This BlockVector
has one block for every time block.

ineq_ub() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
ineq_lb: BlockVector The lower bounds for each inequality constraint. This BlockVector
has one block for every time block.

init_duals_eq() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

init_duals_eq: BlockVector The initial values for the duals of the equality constraints, in-
cluding the coupling constraints. This BlockVector has one block for every time block.
Each block is itself a BlockVector with 3 blocks. The first block contains the duals of the
equality constraints in the corresponding time block. The second block has the duals for

4.3. parapint.interfaces 13

, Release 0.1.0.dev

the coupling constraints linking the states at the beginning of the time block to the coupling
variables between the time block and the previous time block. The third block has the duals
for the coupling constraints linking the states at the end of the time block to the coupling
variables between the time block and the next time block.

init_duals_ineq() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

init_duals_ineq: BlockVector The initial values for the duals of the inequality constraints.
This BlockVector has one block for every time block.

set_duals_eq(duals_eq: pyomo.contrib.pynumero.sparse.block_vector.BlockVector)

Parameters

duals_eq: BlockVector The values for the duals of the equality constraints, including the
coupling constraints. This BlockVector has one block for every time block. Each block
is itself a BlockVector with 3 blocks. The first block contains the duals of the equality
constraints in the corresponding time block. The second block has the duals for the coupling
constraints linking the states at the beginning of the time block to the coupling variables
between the time block and the previous time block. The third block has the duals for the
coupling constraints linking the states at the end of the time block to the coupling variables
between the time block and the next time block.

set_duals_ineq(duals_ineq: pyomo.contrib.pynumero.sparse.block_vector.BlockVector)

Parameters
duals_ineq: BlockVector The values for the duals of the inequality constraints. This Block-
Vector has one block for every time block.

get_duals_eq() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

duals_eq: BlockVector The values for the duals of the equality constraints, including the
coupling constraints. This BlockVector has one block for every time block. Each block
is itself a BlockVector with 3 blocks. The first block contains the duals of the equality
constraints in the corresponding time block. The second block has the duals for the coupling
constraints linking the states at the beginning of the time block to the coupling variables
between the time block and the previous time block. The third block has the duals for the
coupling constraints linking the states at the end of the time block to the coupling variables
between the time block and the next time block.

get_duals_ineq() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

duals_ineq: BlockVector The values for the duals of the inequality constraints. This Block-
Vector has one block for every time block.

evaluate_eq_constraints() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

4.3. parapint.interfaces 14

, Release 0.1.0.dev

eq_resid: BlockVector The residuals of the equality constraints, including the coupling con-
straints. This BlockVector has one block for every time block. Each block is itself a Block-
Vector with 3 blocks. The first block contains the residuals of the equality constraints in the
corresponding time block. The second block has the residuals for the coupling constraints
linking the states at the beginning of the time block to the coupling variables between the
time block and the previous time block. The third block has the residuals for the coupling
constraints linking the states at the end of the time block to the coupling variables between
the time block and the next time block.

evaluate_ineq_constraints() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
ineq_resid: BlockVector The residuals of the inequality constraints. This BlockVector has
one block for every time block.

evaluate_jacobian_eq() — pyomo.contrib.pynumero.sparse.block_matrix.BlockMatrix

Returns

jac_eq: BlockMatrix The jacobian of the equality constraints. The rows have the same
structure as the BlockVector returned from evaluate_eq_constraints. The columns have
the same structure as the BlockVector returned from get_primals.

evaluate_jacobian_ineq() — pyomo.contrib.pynumero.sparse.block_matrix.BlockMatrix

Returns

jac_ineq: BlockMatrix The jacobian of the inequality constraints. The rows have the same
structure as the BlockVector returned from evaluate_ineq_constraints. The columns have
the same structure as the BlockVector returned from get_primals.

load_primals_into_pyomo_model ()

This method takes the current values for the primal variables (those you would get from the get_primals()

method), and loads them into the corresponding Pyomo variables.

pyomo_model (ndx: int) — pyomo.core.base.block._BlockData

Parameters
ndx: int The index of the time block for which the pyomo model should be returned.
Returns

m: _BlockData The pyomo model for the time block corresponding to ndx.
get_pyomo_variables(ndx: int) — Sequence[pyomo.core.base.var._General VarData]

Parameters

ndx: int The index of the time block for which pyomo variables should be returned
Returns

pyomo_vars: list of _GeneralVarData The pyomo variables in the model for the time block

corresponding to ndx

get_pyomo_constraints(ndx: int) — Sequence[pyomo.core.base.constraint._GeneralConstraintData]

. parapint.interfaces

15

, Release 0.1.0.dev

Parameters

ndx: int The index of the time block for which pyomo constraints should be returned
Returns

pyomo_cons: list of _GeneralConstraintData The pyomo constraints in the model for the

time block corresponding to ndx

get_primal_indices(ndx: int, pyomo_variables: Sequence[pyomo.core.base.var._GeneralVarData]) —
Sequence[int]
Parameters
ndx: int The index of the time block

pyomo_variables: Sequence of _GeneralVarData The pyomo variables for which the in-
dices should be returned

Returns

var_indices: Sequence of int The indices of the corresponding pyomo variables. Note that
these indices correspond to the specified time block, not the overall indices. In other words,
the indices that are returned are the indices into the block within get_primals corresponding
to ndx.

get_constraint_indices (ndx, pyomo_constraints) — Sequence[int]

Parameters
ndx: int The index of the time block

pyomo_constraints: Sequence of _GeneralConstraintData The pyomo constraints for
which the indices should be returned

Returns

con_indices: Sequence of int The indices of the corresponding pyomo constraints. Note
that these indices correspond to the specified time block, not the overall indices.

4.3.4 MPI Dynamic SC IP Interface

class MPIDynamicSchurComplementInteriorPointInterface(start t: float, end_t: float, num_time_blocks:
int, comm: mpi4dpy.MPI.Comm)
Bases: parapint.interfaces.schur_complement.sc_ip_interface.
DynamicSchurComplementInteriorPointInterface

A class for interfacing with Parapint’s interior point algorithm for the parallel solution of dynamic optimiza-
tion problems using Schur-Complement decomposition. Users should inherit from this class and, at a mini-
mum, implement the build_model_for_time_block method (see DynamicSchurComplementInteriorPointInter-
face.build_model_for_time_block for details).

Parameters
start_t: float The starting time for the dynamic optimization problem
end_t: float The final time for the dynamic optimization problem

num_time_blocks: int The number of time blocks to split the time horizon into for parallel
solution. This is typically equal to the number of processes available (i.e., comm.Get_size()).

4.3. parapint.interfaces 16

, Release 0.1.0.dev

comm: MPL.Comm The MPI communicator to use. Typically, this is
mpi4py.MPL.COMM_WORLD.

n_primals() — int

Returns

n_primals: int The number of primal variables
evaluate_objective() — float

Returns

objective_val: float The value of the objective
n_eq_constraints() — int

Returns
n_eq_constraints: int The number of equality constraints, including the coupling con-
straints

n_ineq_constraints() — int

Returns

n_ineq_constraints: int The number of inequality constraints
property ownership_map: Dict[int, int]

Returns
ownership_map: dict This is a map from the time block index to the rank that owns that
time block.

property local_block_indices: Sequence[int]

Returns

local_block_indices: list The indices of the time blocks owned by the current process.

abstract build_model_for_time_block(ndx: int, start_t: float, end_t: float, add_init_conditions: bool)

— Tuple[pyomo.core.base.block._BlockData,
Sequence[pyomo.core.base.var._General VarData],
Sequence[pyomo.core.base.var._General VarData]]

This method should be implemented by derived classes. This method should build (and return) the model

for the time interval [start_t, end_t] and return a list of states at start_t and a list of states at end_t (in the

same order). This method will be called once for each time block. The start_states and end_states returned

by this method must be in the same order for every time block.

Parameters
ndx: int The time block index
start_t: float
end_t: float

add_init_conditions: bool This will only be True for time block 0.

4.3.

parapint.interfaces 17

, Release 0.1.0.dev

Returns

pyomo_model: pyomo.core.base.block.Block The model for the time interval [start_t,
end_t].

start_states: Sequence of _GeneralVarData a list of the states at start_t; the order of this
list should be the same for every time block

end_states: Sequence of _GeneralVarData a list of the states at end_t; the order of this list
should be the same for every time block

evaluate_eq_constraints() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

eq_resid: BlockVector The residuals of the equality constraints, including the coupling con-
straints. This BlockVector has one block for every time block. Each block is itself a Block-
Vector with 3 blocks. The first block contains the residuals of the equality constraints in the
corresponding time block. The second block has the residuals for the coupling constraints
linking the states at the beginning of the time block to the coupling variables between the
time block and the previous time block. The third block has the residuals for the coupling
constraints linking the states at the end of the time block to the coupling variables between
the time block and the next time block.

evaluate_grad_objective() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
grad_obj: BlockVector The gradient of the objective. This BlockVector has one block for
every time block and one block for the coupling variables.

evaluate_ineq_constraints() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
ineq_resid: BlockVector The residuals of the inequality constraints. This BlockVector has
one block for every time block.

evaluate_jacobian_eq() — pyomo.contrib.pynumero.sparse.block_matrix.BlockMatrix

Returns

jac_eq: BlockMatrix The jacobian of the equality constraints. The rows have the same
structure as the BlockVector returned from evaluate_eq_constraints. The columns have
the same structure as the BlockVector returned from get_primals.

evaluate_jacobian_ineq() — pyomo.contrib.pynumero.sparse.block_matrix.BlockMatrix

Returns

jac_ineq: BlockMatrix The jacobian of the inequality constraints. The rows have the same
structure as the BlockVector returned from evaluate_ineq_constraints. The columns have
the same structure as the BlockVector returned from get_primals.

get_constraint_indices (ndx, pyomo_constraints) — Sequence[int]

Parameters

ndx: int The index of the time block

4.3. parapint.interfaces 18

, Release 0.1.0.dev

pyomo_constraints: Sequence of _GeneralConstraintData The pyomo constraints for
which the indices should be returned

Returns
con_indices: Sequence of int The indices of the corresponding pyomo constraints. Note
that these indices correspond to the specified time block, not the overall indices.

get_duals_eq() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

duals_eq: BlockVector The values for the duals of the equality constraints, including the
coupling constraints. This BlockVector has one block for every time block. Each block
is itself a BlockVector with 3 blocks. The first block contains the duals of the equality
constraints in the corresponding time block. The second block has the duals for the coupling
constraints linking the states at the beginning of the time block to the coupling variables
between the time block and the previous time block. The third block has the duals for the
coupling constraints linking the states at the end of the time block to the coupling variables
between the time block and the next time block.

get_duals_ineq() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
duals_ineq: BlockVector The values for the duals of the inequality constraints. This Block-

Vector has one block for every time block.

get_primal_indices(ndx: int, pyomo_variables: Sequence[pyomo.core.base.var._GeneralVarData]) —
Sequence[int]
Parameters
ndx: int The index of the time block

pyomo_variables: Sequence of _GeneralVarData The pyomo variables for which the in-
dices should be returned

Returns

var_indices: Sequence of int The indices of the corresponding pyomo variables. Note that
these indices correspond to the specified time block, not the overall indices. In other words,
the indices that are returned are the indices into the block within get_primals corresponding
to ndx.

get_primals() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
primals: BlockVector The values for each primal variable. This BlockVector has one block
for every time block and one block for the coupling variables.

get_pyomo_constraints(ndx: int) — Sequence[pyomo.core.base.constraint._GeneralConstraintData]

Parameters
ndx: int The index of the time block for which pyomo constraints should be returned

Returns

4.3. parapint.interfaces 19

, Release 0.1.0.dev

pyomo_cons: list of _GeneralConstraintData The pyomo constraints in the model for the
time block corresponding to ndx

get_pyomo_variables(ndx: int) — Sequence[pyomo.core.base.var._General VarData]

Parameters
ndx: int The index of the time block for which pyomo variables should be returned
Returns
pyomo_vars: list of _GeneralVarData The pyomo variables in the model for the time block
corresponding to ndx

ineq_1b() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
ineq_lb: BlockVector The lower bounds for each inequality constraint. This BlockVector
has one block for every time block.

ineq_ub() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

ineq_lb: BlockVector The lower bounds for each inequality constraint. This BlockVector
has one block for every time block.

init_duals_eq() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

init_duals_eq: BlockVector The initial values for the duals of the equality constraints, in-
cluding the coupling constraints. This BlockVector has one block for every time block.
Each block is itself a BlockVector with 3 blocks. The first block contains the duals of the
equality constraints in the corresponding time block. The second block has the duals for
the coupling constraints linking the states at the beginning of the time block to the coupling
variables between the time block and the previous time block. The third block has the duals
for the coupling constraints linking the states at the end of the time block to the coupling
variables between the time block and the next time block.

init_duals_ineq() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
init_duals_ineq: BlockVector The initial values for the duals of the inequality constraints.
This BlockVector has one block for every time block.

init_primals() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns

init_primals: BlockVector The initial values for each primal variable. This BlockVector
has one block for every time block and one block for the coupling variables.

load_primals_into_pyomo_model ()
This method takes the current values for the primal variables (those you would get from the get_primals()
method), and loads them into the corresponding Pyomo variables.

4.3. parapint.interfaces 20

, Release 0.1.0.dev

primals_lb() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
primals_lb: BlockVector The lower bounds for each primal variable. This BlockVector has
one block for every time block and one block for the coupling variables.

primals_ub() — pyomo.contrib.pynumero.sparse.block_vector.BlockVector

Returns
primals_ub: BlockVector The upper bounds for each primal variable. This BlockVector
has one block for every time block and one block for the coupling variables.

pyomo_model (ndx: int) — pyomo.core.base.block._BlockData

Parameters
ndx: int The index of the time block for which the pyomo model should be returned.
Returns

m: _BlockData The pyomo model for the time block corresponding to ndx.
set_duals_eq(duals_eq: pyomo.contrib.pynumero.sparse.block_vector.BlockVector)

Parameters

duals_eq: BlockVector The values for the duals of the equality constraints, including the
coupling constraints. This BlockVector has one block for every time block. Each block
is itself a BlockVector with 3 blocks. The first block contains the duals of the equality
constraints in the corresponding time block. The second block has the duals for the coupling
constraints linking the states at the beginning of the time block to the coupling variables
between the time block and the previous time block. The third block has the duals for the
coupling constraints linking the states at the end of the time block to the coupling variables
between the time block and the next time block.

set_duals_ineq(duals_ineq: pyomo.contrib.pynumero.sparse.block_vector.BlockVector)

Parameters
duals_ineq: BlockVector The values for the duals of the inequality constraints. This Block-
Vector has one block for every time block.
set_primals (primals: pyomo.contrib.pynumero.sparse.block_vector.BlockVector)
Set the values of the primal variables for evaluation (i.e., the evaluate_* methods).
Parameters

primals: BlockVector The values for each primal variable. This BlockVector should have
one block for every time block and one block for the coupling variables.

. parapint.interfaces 21

CHAPTER
FIVE

SANDIA FUNDING STATEMENT

This work was supported by Sandia National Laboratories’ Laboratory Directed Research and Development program.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

22

CHAPTER
SIX

INDICES AND TABLES

* genindex
* modindex

¢ search

23

BIBLIOGRAPHY

[Word2014] Word, D. P., Kang, J., Akesson, J., & Laird, C. D. (2014). Efficient parallel solution of large-scale non-
linear dynamic optimization problems. Computational Optimization and Applications, 59(3), 667-688.

24

P

parapint, 6
parapint.algorithms, 11
parapint.interfaces, 11
parapint.linalg, 6

PYTHON MODULE INDEX

25

B

BaseInteriorPointInterface (class in parap-
int.interfaces.interface), 11
build_model_for_time_block() (DynamicSchur-

ComplementinteriorPointInterface ~ method),
12
build_model_for_time_block() (MPIDynam-

icSchurComplementlnteriorPointInterface
method), 17

D

do_back_solve()
method), 7

do_back_solve() (LinearSolverlnterface method), 6

do_back_solve() (MPISchurComplementLinearSolver
method), 10

do_back_solve() (Mumpsinterface method), 8

do_back_solve() (Scipylnterface method), 9

do_numeric_factorization()
PointMA27Interface method), 7

do_numeric_factorization() (LinearSolverInterface
method), 6

do_numeric_factorization() (MPISchurComple-
mentLinearSolver method), 10

(InteriorPointMA27Interface

(Interior-

do_numeric_factorization() (Mumpslnterface
method), 8

do_numeric_factorization() (Scipylnterface
method), 9

do_symbolic_factorization() (Interior-

PointMA27Interface method), 7
do_symbolic_factorization() (LinearSolverinter-

face method), 6
do_symbolic_factorization() (MPISchurComple-

mentLinearSolver method), 9

do_symbolic_factorization() (Mumpslnterface
method), 8

do_symbolic_factorization() (ScipylInterface
method), 9

DynamicSchurComplementInteriorPointInterface
(class in parap-

INDEX

E

evaluate_eq_constraints() (DynamicSchurComple-
mentlnteriorPointlnterface method), 14
evaluate_eqg_constraints() (MPIDynamicSchur-
ComplementinteriorPointInterface ~ method),
18
evaluate_grad_objective() (DynamicSchurComple-
mentlInteriorPointInterface method), 13
evaluate_grad_objective() (MPIDynamicSchur-
ComplementinteriorPointInterface ~ method),
18
evaluate_ineq_constraints() (DynamicSchurCom-
plementlnteriorPointInterface method), 15
evaluate_ineq_constraints() (MPIDynamicSchur-
ComplementinteriorPointInterface method), 18
evaluate_jacobian_eq(Q) (DynamicSchurComple-
mentlInteriorPointInterface method), 15
evaluate_jacobian_eq() (MPIDynamicSchurCom-
plementlInteriorPointInterface method), 18
evaluate_jacobian_ineq() (DynamicSchurComple-
mentlInteriorPointInterface method), 15
evaluate_jacobian_ineq() (MPIDynamicSchur-

ComplementinteriorPointInterface =~ method),
18
evaluate_objective() (DynamicSchurComple-

mentinteriorPointInterface method), 13
evaluate_objective() (MPIDynamicSchurComple-
mentlInteriorPointInterface method), 17

G

get_cntl) (InteriorPointMA27Interface method), 8

get_constraint_indices() (DynamicSchurComple-
mentlInteriorPointInterface method), 16

get_constraint_indices() (MPIDynamicSchur-
ComplementinteriorPointInterface ~ method),
18

get_duals_eq() (DynamicSchurComplementlnterior-
PointInterface method), 14

get_duals_eq() (MPIDynamicSchurComplementinte-
riorPointInterface method), 19

int.interfaces.schur_complement.sc_ip_interface),get_duals_ineq() (DynamicSchurComplementinteri-

11

orPointlnterface method), 14

26

, Release 0.1.0.dev

get_duals_ineq() (MPIDynamicSchurComplementin-
teriorPointlnterface method), 19
get_icntl) (InteriorPointMA27Interface method), 8
get_inertia() (InteriorPointMA27Interface method), 7
get_inertia() (LinearSolveriInterface method), 6
get_inertia() (MPISchurComplementLinearSolver
method), 10
get_inertia() (Mumpsinterface method), 8
get_inertia() (Scipylnterface method), 9
get_primal_indices() (DynamicSchurComple-
mentiInteriorPointInterface method), 16
get_primal_indices() (MPIDynamicSchurComple-
mentInteriorPointInterface method), 19
get_primals() (DynamicSchurComplementlnterior-
PointInterface method), 13
get_primals() (MPIDynamicSchurComplementinteri-
orPointlnterface method), 19
get_pyomo_constraints() (DynamicSchurComple-
mentinteriorPointInterface method), 15
get_pyomo_constraints() (MPIDynamicSchurCom-
plementlinteriorPointInterface method), 19
get_pyomo_variables() (DynamicSchurComple-
mentInteriorPointInterface method), 15
get_pyomo_variables() (MPIDynamicSchurComple-
mentinteriorPointlnterface method), 20

increase_memory_allocation()
PointMA27Interface method), 7

increase_memory_allocation() (MPISchurComple-
mentLinearSolver method), 11

ineq_lb(Q) (DynamicSchurComplementInteriorPointln-
terface method), 13

ineq_1b(Q) (MPIDynamicSchurComplementInterior-
PointInterface method), 20

ineq_ub(Q (DynamicSchurComplementInteriorPointln-
terface method), 13

ineq_ubQ (MPIDynamicSchurComplementInterior-
PointInterface method), 20

init_duals_eq() (DynamicSchurComplementlnterior-
PointInterface method), 13

init_duals_eq() (MPIDynamicSchurComplementin-
teriorPointlnterface method), 20

init_duals_ineq() (DynamicSchurComplementlnteri-
orPointInterface method), 14

init_duals_ineq() (MPIDynamicSchurComple-
mentInteriorPointInterface method), 20

init_primals() (DynamicSchurComplementlnterior-
PointInterface method), 12

init_primals() (MPIDynamicSchurComplementinte-
riorPointInterface method), 20

InteriorPointInterface (class in
int.interfaces.interface), 11

(Interior-

parap-

InteriorPointMA27Interface (class in parap-
int.linalg.ma27_interface), 6
LinearSolverInterface (class in parap-

int.linalg.base_linear_solver_interface),
6

load_primals_into_pyomo_model () (DynamicSchur-
ComplementlinteriorPointInterface method), 15

load_primals_into_pyomo_model() (MPIDynam-
icSchurComplementlnteriorPointInterface
method), 20

local_block_indices (MPIDynamicSchurComple-
mentlInteriorPointInterface property), 17

M

module
parapint, 6
parapint.algorithms, 11
parapint.interfaces, 11
parapint.linalg, 6
MPIDynamicSchurComplementInteriorPointInterface

(class in parap-
int.interfaces.schur_complement.mpi_sc_ip_interface),
16

MPISchurComplementLinearSolver (class in parap-
int.linalg.schur_complement.mpi_explicit_schur_complement),
9

MumpsInterface (class in
int.linalg. mumps_interface), 8

parap-

N

n_eq_constraints() (DynamicSchurComplementlInte-
riorPointlnterface method), 13

n_eqg_constraints() (MPIDynamicSchurComple-
mentlnteriorPointInterface method), 17

n_ineq_constraints() (DynamicSchurComple-
mentinteriorPointlInterface method), 13

n_ineq_constraints() (MPIDynamicSchurComple-
mentlInteriorPointInterface method), 17

n_primals() (DynamicSchurComplementInterior-
PointInterface method), 12

n_primals() (MPIDynamicSchurComplementlnterior-
PointInterface method), 17

O

ownership_map (MPIDynamicSchurComplementlnteri-
orPointlnterface property), 17

P

parapint
module, 6
parapint.algorithms

Index

27

, Release 0.1.0.dev

module, 11
parapint.interfaces
module, 11
parapint.linalg
module, 6
primals_lb(Q) (DynamicSchurComplementlInterior-
PointInterface method), 12
primals_lb() (MPIDynamicSchurComplementlnterior-
PointInterface method), 20
primals_ub() (DynamicSchurComplementlnterior-
PointInterface method), 12
primals_ub() (MPIDynamicSchurComplementlnterior-
PointInterface method), 21
pyomo_model () (DynamicSchurComplementlnterior-
PointInterface method), 15
pyomo_model () (MPIDynamicSchurComplementlnteri-
orPointlnterface method), 21

S

ScipyInterface (class in parap-
int.linalg.scipy_interface), 9

set_cntl () (InteriorPointMA27Interface method), 8

set_duals_eq() (DynamicSchurComplementlnterior-
PointInterface method), 14

set_duals_eq() (MPIDynamicSchurComplementlinte-
riorPointInterface method), 21

set_duals_ineq() (DynamicSchurComplementlnteri-
orPointlnterface method), 14

set_duals_ineq() (MPIDynamicSchurComplementln-
teriorPointlnterface method), 21

set_icntl () (InteriorPointMA27Interface method), 8

set_primals() (DynamicSchurComplementlnterior-
PointInterface method), 12

set_primals() (MPIDynamicSchurComplementlnteri-
orPointlnterface method), 21

Index 28

	Overview
	Installation
	Requirements

	Solving Dynamic Optimization Problems with Schur-Complement Decomposition
	API documentation
	parapint.linalg
	Base Linear Solver Class
	MA27 Interface
	MumpsInterface
	ScipyInterface
	Parallel Schur-Complement Linear Solver

	parapint.algorithms
	InteriorPoint

	parapint.interfaces
	Base IP Interface
	IP Interface
	Dynamic SC IP Interface
	MPI Dynamic SC IP Interface

	Sandia Funding Statement
	Indices and tables

